Explainable Deep Learning for Non-Invasive Detection of Pulmonary Artery
Hypertension from Heart Sounds

Alex Gaudio?3, Miguel Coimbra?3, Aurélio Campilho??, Asim Smailagic', Samuel E Schmidt?,
Francesco Renna??

! Carnegie Mellon University, Pittsburgh, United States
2 INESC TEC, Porto, Portugal
3 University of Porto, Porto, Portugal
4 Aalborg University, Aalborg, Denmark

Abstract

Late diagnoses of patients affected by pulmonary artery
hypertension (PH) have a poor outcome. This observa-
tion has led to a call for earlier, non-invasive PH de-
tection. Cardiac auscultation offers a non-invasive and
cost-effective alternative to both right heart catheteriza-
tion and doppler analysis in analysis of PH. We propose
to detect PH via analysis of digital heart sound record-
ings with over-parameterized deep neural networks. In
contrast with previous approaches in the literature, we as-
sess the impact of a pre-processing step aiming to separate
S2 sound into the aortic (A2) and pulmonary (P2) compo-
nents. We obtain an area under the ROC curve of .95, im-
proving over our adaptation of a state-of-the-art Gaussian
mixture model PH detector by +.17. Post-hoc explana-
tions and analysis show that the availability of separated
A2 and P2 components contributes significantly to predic-
tion. Analysis of stethoscope heart sound recordings with
deep networks is an effective, low-cost and non-invasive
solution for the detection of pulmonary hypertension.

1. Introduction

Pulmonary artery hypertension (PH) is an under-
recognized disease, with unmet need for diagnostic and
treatment recommendations in low and middle-income re-
gions [1]. PH disease has high mortality rate and early
detection in screening programs can improve outcomes.

Existing tools for PH detection are not well optimized
for the needs of low and middle income regions. Right
heart catheterization is a gold standard for PH detection,
but it is highly invasive and not suitable for screening pro-
grams. Doppler echocardiography is widely used for clin-
ical screening of PH, but the noisy nature of its measure-
ments requires additional modalities to improve reliability
[2,3]. Ultrasound technology also requires a trained tech-
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nician and expensive machinery [4]. Other tests helpful to
PH detection include blood gas analysis and imaging from
cardiac magnetic resonance, chest x-ray, and pulmonary
angiography [5]. Automated PH detection using cardiac
auscultation data recently emerged as a non-invasive and
low cost alternative that can outperform physicians [6].
Our approach to analyze heart sounds with deep networks
has low resource cost and is suitable for early screening.

Detection of PH from heart sounds focuses on an anal-
ysis of the second heart sound, S2, which itself consists of
two mixed sound signals: the Aortic valve closure (A2)
and the Pulmonic valve closure (P2) [7]. Peak-to-peak
analysis, in the time domain, shows that patients with PH
disease present with larger distance and larger difference
in amplitude between the A2 and P2 peaks [6].

Automated diagnosis of PH from heartsound includes
handcrafted analysis [8] and traditional machine learning
[6,9]. In a related area, application of deep Convolutional
Neural Networks (CNNs) is useful in heart murmur de-
tection in children [4] and heart sound segmentation [10].
Our approach adopts deep convolutional neural networks
(CNNs) [11,12], typically used for image analysis, for the
analysis of audio data. Post-hoc explanations of CNN pre-
dictions, with methods like IntegratedGradients [13], facil-
itate transparency of the black box model.

The novelty in our approach to PH detection is to pro-
pose deep networks on small data. We demonstrate: a) Ap-
plying deep networks to analysis of heart sound recordings
gives strong predictive performance; b) Post-hoc explana-
tions verify the role of proposed A2 and P2 components in
the second heart sound.

2. Methods

Data Acquisition: We acquire a private dataset of 42
patients at Centro Hospitalar Universitdrio do Porto, Por-
tugal. Summary statistics in Table 1 show 29 patients with
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Table 1. Dataset Summary

Population Male Female Age HR (bpm)
Has PH 9 20 60£17  70+£10
No PH 8 5 57£10  694£8

All Patients 17 25 59+15 6949

PH and 13 without PH. Of diseased patients, the majority
(20 of 29) are female. The age and heart rates of both pos-
itive and diseased populations are similar. Inclusion and
exclusion criteria are unknown. PH is defined as positive
when a patient has a Mean Pulmonary Arterial Pressure
(MPAP) above 25 mm Hg, or Pulmonary Arterial Systolic
Pressure (PASP) above 30 mm Hg. For each patient, we
obtain the ground truth pulmonary artery pressure from
a right heart catheterization, and an accompanying five
minute PCG heart sound recording. The recording was ob-
tained in a relatively quiet clinical setting with the patient
supine and at rest. Auscultation was performed over the
second left intercostal space using a custom cable stetho-
scope connected to a Rugloop Waves system. Heart sounds
were recorded at a sample rate of 8 kHz and their ampli-
tudes were quantized with 16-bit resolution. The dataset is
not published to preserve privacy.

Pre-Processing: In each five minute audio signal, we
segment the heatbeats and extract a 200 ms window for
each heartbeat’s S2 sound, where start time of the window
is chosen so the peaks of all S2 sounds for that patient are
aligned in time. The S2 signal is filtered with second order
Butterworth filters with cut-off frequencies of 25 Hz and
400 Hz, re-sampled to 1 kHz, cleaned by removing spikes
via the method in [14], and separated into proposed A2
and P2 components according to [15]. Source separation
assumes the Aortic and Pulmonic components maintain
approximately the same waveform across heartbeats, and
assumes the delay between the components within a heart-
beat varies due to change in thoracic pressure at different
respiratory phases. The two components are retrieved via
alternating optimization of a least-squares problem.

Alignment and segmentation results in a multi-channel
2-D representation of the audio data containing S2, pro-
posed A2, and proposed P2 components. Each 2-D chan-
nel has 200 columns (representing a 200 ms window) and
as many rows as there are heartbeats. We then make chan-
nels for all patients of the same shape by zero padding to
454 rows, and independently normalize each of the three
channels per patient to unit variance. Normalizing to unit
variance helps stabilize gradient backprogation by reduc-
ing risk of vanishing or exploding gradients.

Deep CNN Models and Optimization: We consider
DenseNet121, ResNetl8 and EfficientNet-bO architec-
tures. Pre-trained deep network initialization can im-
prove performance for small datasets. Random and Ima-
geNet initializations were considered. We report DenseNet
trained from random initialization, ResNetl18 from Ima-

geNet initialization and EfficientNet-b0 from standard ad-
versarial ImageNet initialization. The models were all
trained with batch Gradient Descent (learning rate 0.0001,
momentum 0.5) for 150 epochs. Deep networks typically
train on large datasets with stochastic minibatch gradient
descent. To stabilize gradient updates, we use a batch size
equal to the dataset size. The loss is weighted binary cross

entropy with the positive class balancing weight %.

GMM and SVM Baseline: To benchmark the pre-
dictive performance of the deep networks against classi-
cal methods, we implement a Gaussian Mixture Model
(GMM) and Support Vector Machine (SVM). Our GMM
implementation adapts the state-of-the-art work of [6],
where one GMM was trained for positive classes, and an-
other for negative classes. The class of a test sample is
the GMM model with higher posterior negative log like-
lihood. To get best performance with this baseline, we
develop a different pre-processing pipeline, and accord-
ingly optimized the GMM models to have two components
and spherical covariance. The SVM uses an RBF kernel
and slack parameter C' = 1. For pre-processing, we used
only the S2 channel. The addition of proposed A2 and
P2 channels negatively impacts performance due to over-
fitting. Each of the heartbeats (each row of the S2 channel)
was transformed with a 1-d Short Time Fourier Transform,
using an FFT window of 64 samples and hop length of two
samples, and computing the energy spectrum via absolute
value. The patient data, a tensor of shape (H,33,101), was
reduced to (33,101) by computing a 98% quantile over the
H heartbeats. The channel was zero padded to 454 rows
and normalized to unit variance, then flattened as a vector
and subsequently passed to the SVM and GMM models.

Evaluation All models were evaluated using 10-fold
stratified cross validation. To report performance, we
store validation set prediction probabilities from each fold.
There is one prediction probability for each patient. We
report the area under the ROC curve (ROC AUC) and
standard classification metrics. Classification metrics re-
quire choosing a threshold to convert the probabilities into
classes. We choose a threshold T}, for each k™ fold that
maximizes the difference of true positive rate minus the
false positive rate on the k™ fold training set ROC curve.
This threshold optimizes the training set balanced accuracy
score. We compute validation performance within each
fold and then aggregate the metrics by an average across
folds and epochs 100 to 150.

Post-hoc Explainability To better understand which
parts of the proposed A2 and proposed P2 channels con-
tribute to PH detection, we apply the IntegratedGradients
attribution method [13]. In particular, after training the
DenseNet121 model on ten folds, we have ten indepen-
dently trained models. Therefore, we compute ten attri-
butions to each heartbeat in the dataset and then average
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Table 2. Deep Networks Give State-of-the-art Results

Model ROC AUC MCC BAcc Precision Recall
GMM 0.78 0.57 0.78 0.92 0.82
SVM 0.88 0.55 0.78 0.97 0.65
DenseNet121 0.95 0.82 0.91 0.96 0.90
EfficientNet-b0 0.93 0.79 0.90 1.00 0.81
ResNet18 0.92 0.53 0.77 0.88 0.59
DenseNet121 (S2) 0.93 0.69 0.85 0.94 0.81
EfficientNet-b0 (S2)  0.89 0.52 0.76 0.85 0.84

them to get one attribution per channel. For better visual-
ization, the attribution is converted to a magnitude via ab-
solute value and then clipped to 1% and 99% of its values.
Clipping aids visualization because gradient-based attribu-
tion methods generate some outlier points.

3. Results

Deep Networks Improve Detection Performance.
The results in Table 2 show that the DenseNet121 and
EfficientNet-b0 deep networks outperform traditional ma-
chine learning models on the considered PH dataset by
large margins. The DenseNet121 model has the high-
est performance of 0.95 ROC AUC, the highest Balanced
Accuracy (BAcc), and highest Matthew’s Correlation Co-
efficient (MCC). The two best performing models are
DenseNet121 and EfficientNet-b0.

Separating S2 into A2 and P2 Improves Perfor-
mance. The bottom rows of Table 2 show that availability
of S2, A2 and P2 channels improves performance over us-
ing only the S2. A motivation of deep learning is to negate
need for pre-processing via data-driven feature generation
and larger datasets. In the small data regime, as is the
case here, we observe that pre-processing improves perfor-
mance. Moreover, the over-parameterized nature of deep
networks requires rethinking traditional interpretations of
underfitting and overfitting. Classical methods like the
SVM and GMM overfit with additional parameters from
the A2 and P2 channels while deep networks improve.

Proposed A2 and P2 Agree with Domain Knowledge.
The top three rows of Figure 1 visualize one patient’s heart
sound data. Each line is a single heartbeat. The top row
shows the S2 signal. The second and third rows show the
proposed source separated signals A2 and P2. We visual-
ize the signals after normalizing them to unit variance to
represent the input as passed to the predictive model. We
found empirically that the normalization improved perfor-
mance; normalization makes the quieter P2 have similar
amplitude to the louder A2. We observe the A2 signal is
very clearly defined, due to the fact that the heartbeats have
been aligned based on their peak. The distance between
A2 and P2 components varies depending factors such as
whether the patient is inhaling or exhaling, as well as pres-
ence of PH. Thus, current domain knowledge agrees with

the visual that an average P2 signal should be less well lo-
cated in time. In this patient, we observe the P2 has most
varied behavior between 30 ms to 60 ms. Current domain
knowledge expects PH to be related to changes in the tim-
ing and amplitude of the P2.

Post-Hoc Explanation Validates Domain Knowledge
and Utility of A2 and P2 Segmentations. The bottom
plot in Figure 1 shows the average attribution over all
heartbeats and a 99.9% confidence interval. The attribu-
tion to P2 dominates for this patient, and also coincides
with the period between 30 ms to 60 ms of most varied P2
behavior. Both observations suggest Deep Networks agree
with domain knowledge. The attribution to A2 is strongest
at the peak, just before 25 ms. Attribution shows the avail-
ability of separated components facilitates prediction.

4. Conclusions

Our main contribution is to advance the state-of-the-art
in automated detection of pulmonary artery hypertension
from heart sounds. We show that deep networks trained
on a private dataset of pre-processed digital stethoscope
recordings achieve ROC AUC scores of 0.95 and 0.93, giv-
ing improvements of +.17 and +.15 over our adaptation
of a previous state-of-the-art based on a Gaussian Mixture
Model, and improvements of +.07 and +.05 over our best
traditional machine learning implementation. Post-hoc ex-
planations and improved performance show that the sepa-
ration of the S2 sound into proposed A2 and P2 compo-
nents aids detection. Analysis of stethoscope heart sound
data with deep networks is an effective, low-cost and non-
invasive solution for detection of pulmonary hypertension.
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